feed info

57 articles from PhysOrg

New method to create 'membraneless compartments' lends insight into cellular processes

A new laboratory method allows researchers to create compartments within a liquid that, like drops of oil in water, are separate but have no physical barrier between them. The method could help researchers understand how human cells use similar "membraneless compartments" to segregate and concentrate components for important cellular processes, chemical reactions, or other biological functions.

Artificial intelligence helps prevent disruptions in fusion devices

An international team of scientists led by a graduate student at the U.S. Department of Energy's (DOE) Princeton Plasma Physics Laboratory (PPPL) has demonstrated the use of Artificial Intelligence (AI), the same computing concept that will empower self-driving cars, to predict and avoid disruptions—the sudden release of energy stored in the plasma that fuels fusion reactions—that can halt the...

Predicting reaction results: Machines learn chemistry

Everyday life without artificial intelligence is barely conceivable in today's world. Countless applications in areas such as autonomous driving, foreign language translation or medical diagnostics have found their way into our lives. In chemical research, too, great efforts are being made to apply artificial intelligence (AI), also known as machine learning, effectively. These technologies have...

Waves in thin air with broad effects

Mars has a very thin atmosphere, with nearly one hundredth the density of ours on Earth, and gravity pulls with little more than one third of the strength we feel on our planet. As a result, dust storms can go global. For future missions to Mars, it is important to understand the planet's airy envelope and to forecast its moods.

Long-distance fiber link poised to create powerful networks of optical clocks

An academic-industrial team in Japan has connected three laboratories in a 100-kilometer region with an optical telecommunications fiber network stable enough to remotely interrogate optical atomic clocks. This type of fiber link is poised to expand the use of these extremely precise timekeepers by creating an infrastructure that could be used in a wide range of applications such as communication...

Emissions of several ozone-depleting chemicals are larger than expected

In 2016, scientists at MIT and elsewhere observed the first signs of healing in the Antarctic ozone layer. This environmental milestone was the result of decades of concerted effort by nearly every country in the world, which collectively signed on to the Montreal Protocol. These countries pledged to protect the ozone layer by phasing out production of ozone-depleting chlorofluorocarbons, which...

Fast reconnection in turbulent media

Solar flares, similar to many other astrophysical energetic processes, are related to magnetic reconnection. During these events magnetic energy is transferred from other forms of energy, mostly heat and energetic particles. Traditionally, the goal of various models of magnetic reconnection was to explain the rate of this energy transfer. However, the flares are just one of the processes that...

Perovskite solution aging: Scientists find solution

A research team from the Qingdao Institute of Bioenergy and Bioprocess Technology (QIBEBT) of the Chinese Academy of Sciences (CAS) has proposed a new understanding of the aging process of perovskite solution and also found a way to avoid side reactions.

Dams in the upper Mekong River modify nutrient bioavailability downstream

The number of hydropower dams has increased dramatically in the last 100 years for energy supply, climate change mitigation, and economic development. However, recent studies have overwhelmingly stressed the negative consequences of dam construction. Notably, it is commonly assumed that reservoirs retain nutrients, and this nutrient reduction significantly reduces primary productivity, fishery...

Telecommuting could curb the coronavirus epidemic

Recent surveys from both the National Household Transportation Survey and the Bureau of Labor Statistics indicate that around 29% of the United States workforce has the option to work at home, and around 15% usually does so.

Promising material shows new evidence of unconventional superconductivity

In recent years, the search for non-trivial topological materials has become a hot topic in condensed matter physics. Since Hor et al, first reported the discovery of superconductivity in Cu doped topological material Bi2Se3 in 2010, the CuxBi2Se3 has become one of the most promising materials as topological superconductor due to its unique physical properties and crystal structure. However, the...

Major advances in our understanding of New World Morning Glories

A major advance in revealing the unknown plant diversity on planet Earth is made with a new monograph, published in the open-access, peer-reviewed journal PhytoKeys. The global-wide study, conducted by researchers at the University of Oxford, lists details about each of the 425 New World species in the largest genus within the family of morning glories, thanks to an all-round approach combining...

Researchers reveal lignin protection mechanism in forest soils

Over the course of forest succession, both components of plant residues and the structure of soil microbial communities play important roles in affecting soil aggregates, and thus the sequestration and stability of soil organic carbon. However, up till now there is still a lack of holistic understanding of the interactions among root turnover, microbial community composition, chemical composition...

Elucidation of mechanisms that coordinate cell memory inheritance with DNA replication

Why do normal cells turn into cancer cells? One of the factors is deeply related to the failure of the cell differentiation mechanism called DNA methylation. The joint research groups of The Institute of Medical Science, the University of Tokyo, Yokohama City University, and Center for Integrated Protein Science Munich (CIPSM) have clarified new mechanism for controlling DNA methylation in cells.

Qubits that operate at room temperature

Scientists from NUST MISIS (Russia) together with colleagues from Sweden, Hungary and U.S., found a way to manufacture stable qubits that operate at room temperature, in contrast to the majority of existing analogues. This opens up new prospects for creating a quantum computer. Moreover, the results of the research can already be used to create high-accuracy magnetometers, biosensors and new...