feed info

55 articles from PhysOrg

'Water wires' may play bigger role in cellular function

Each of our cells is surrounded by a complex membrane that functions as a biological border, letting ions and nutrients such as salt, potassium and sugar in and out. The guards are membrane proteins, which do the hard work of permitting or blocking the traffic of these molecules.

Silver nanocubes make point-of-care diagnostics easier to read

Engineers at Duke University have shown that nanosized silver cubes can make diagnostic tests that rely on fluorescence easier to read by making them more than 150 times brighter. Combined with an emerging point-of-care diagnostic platform already shown capable of detecting small traces of viruses and other biomarkers, the approach could allow such tests to become much cheaper and more widespread.

Dogs can detect traces of gasoline down to one billionth of a teaspoon

Trained dogs can detect fire accelerants such as gasoline in quantities as small as one billionth of a teaspoon, according to new research by University of Alberta chemists. The study provides the lowest estimate of the limit of sensitivity of dogs' noses and has implications for arson investigations.

Ancient rocks show high oxygen levels on Earth two billion years ago

Earth may have been far more oxygen-rich early in its history than previously thought, setting the stage for the evolution of complex life, according to new research by scientists at the University of Alberta and the University of Tartu in Estonia. The study provides evidence for elevated oxygen levels 2 billion years ago and flies in the face of previously accepted models.

Little skates could hold the key to cartilage therapy in humans

Nearly a quarter of Americans suffer from arthritis, most commonly due to the wear and tear of the cartilage that protects the joints. As we age, or get injured, we have no way to grow new cartilage. Unlike humans and other mammals, the skeletons of sharks, skates, and rays are made entirely of cartilage and they continue to grow that cartilage throughout adulthood.

Do democracies behave differently from non-democracies when it comes to foreign policy?

The question of whether democracies behave differently from non-democracies is a central, and intense, debate in the field of international relations. Two intellectual traditions—liberalism and realism—dominate. Liberals argue that democracies do indeed behave differently, while realists insist that regime type and ideology are of little relevance in understanding foreign policy behavior.

Transistor sets a new standard for energy efficiency

Smartphones, laptops and smartwatches consume vast quantities of energy, yet only around half of this energy is actually used to power important functions. And with billions of these devices in use worldwide, a significant amount of energy goes to waste. Professor Adrian Ionescu and his team at EPFL's Nanoelectronic Devices Laboratory (Nanolab) have launched a series of research projects in the...

Researchers create electronic diodes beyond 5G performance

David Storm, a research physicist, and Tyler Growden, an electrical engineer, both with the U.S. Naval Research Laboratory, developed a new gallium nitride-based electrical component called a resonant tunneling diode (RTD) with performance beyond the anticipated speed of 5G.

Researchers bringing single-cell gene expression studies to a benchtop near you

By disrupting the expression of a particular gene and observing how this change affects expression of other genes, researchers can learn about the cellular roles of the disrupted gene. New technologies such as Perturb-seq offer unprecedented detail and depth of insight from such genetic disruption studies, but technical and practical hurdles have limited use of Perturb-seq. A new study by...

Filming quantic measurement for the first time

Quantum physics deals with microscopic systems such as atoms and light particles. It is a theory that makes it possible to calculate the probabilities of the possible results of any measurement taken on these systems. However, what happens during the measurement was a mystery. A team of researchers from the University of Seville, the University of Stockholm (Sweden) and the University of Siegen...

A study analyzes the unexpected behavior of hydrogen flames

Hydrogen flames can propagate even with very little fuel, within surprisingly narrow gaps and can extend breaking up into fractal patterns. That is the unexpected physical behavior of this gas when it burns, which has been detected by a scientific team led by researchers from Universidad Carlos III de Madrid (UC3M). These results can help to improve the safety of Hydrogen-powered devices.

Super steel project attains major breakthrough

The Super Steel project led by Professor Huang Mingxin at the Department of Mechanical Engineering of the University of Hong Kong (HKU), with collaborators at the Lawrence Berkeley National Lab (LBNL), has made important breakthrough in its new super D&P steel (produced using a new deformed and partitioned method) to greatly enhance its fracture resistance while maintaining super strong in...

Total synthesis of cotylenin A for a new anticancer drug without side effects

Scientists at Waseda University succeeded in developing a method for a total synthesis of cotylenin A, a plant growth regulator which has attracted considerable attention from the scientific community due to its promising bioactivity as an anti-cancer agent. This method was reported in the Journal of the American Chemical Society on March 16, 2020.