200 articles from FRIDAY 30.4.2021

Tropical lakes may emit more methane

Methane is not the most abundant greenhouse gas in our atmosphere, but it is among the most potent. Roughly a quarter of global methane emissions come from natural sources, and freshwater ecosystems are the largest source of atmospheric methane. Most of the data on methane dynamics in aquatic ecosystems come from boreal and temperate environments. Less is known about the fate of methane in...

Electron beam melting gets brittle metal into shape

Tungsten has the highest melting point of all metals, 3,422 degrees Celsius. This makes the material ideal for use at high temperatures in e.g. space rocket nozzles, heating elements of high-temperature furnaces, or the fusion reactor. However, the metal is highly brittle and, hence, difficult to process. Researchers of Karlsruhe Institute of Technology (KIT) have developed an innovative approach...

Researchers analyze circulating currents inside gold nanoparticles

According to classical electromagnetism, a charged particle moving in an external magnetic field experiences a force that makes the particle's path circular. This basic law of physics are exploited in designing cyclotrons that work as particle accelerators. When nanometer-size metal particles are placed in a magnetic field, the field induces a circulating electron current inside the particle. The...

Glacier avalanches more common than thought

One tends to think of mountain glaciers as slow moving, their gradual passage down a mountainside visible only through a long series of satellite imagery or years of time-lapse photography. However, new research shows that glacier flow can be much more dramatic, ranging from about 10 meters a day to speeds that are more like that of avalanches, with obvious potential dire consequences for those...

Studying top quarks at high and not-so-high energies

CERN's Large Hadron Collider (LHC) is famous for colliding protons at world-record energies—but sometimes it pays to dial down the energy and see what happens under less extreme conditions. The LHC started operation in 2010 with a collision energy of 7 TeV, and ran at 13 TeV from 2015 to 2018. But for one week in 2017, the LHC produced moderate-intensity collisions at only 5 TeV—allowing...

'Awake' concept brings proton bunches into sync

The future of particle acceleration has begun. Awake is a promising concept for a completely new method with which particles can be accelerated even over short distances. The basis for this is a plasma wave that accelerates electrons and thus brings them to high energies. A team led by the Max Planck Institute for Physics now reports a breakthrough in this context. For the first time, they were...

Move over CRISPR, the retrons are coming

While the CRISPR-Cas9 gene editing system has become the poster child for innovation in synthetic biology, it has some major limitations. CRISPR-Cas9 can be programmed to find and cut specific pieces of DNA, but editing the DNA to create desired mutations requires tricking the cell into using a new piece of DNA to repair the break. This bait-and-switch can be complicated to orchestrate, and can...

Three new studies suggest Z-genome is much more widespread in bacteria-invading viruses than thought

Three teams working independently have found evidence that suggests the Z-genome in bacteria-invading viruses is much more widespread than thought. All three of the groups have used a variety of genomic techniques to identify parts of the pathways that lead development of the Z-genome in bacteria-invading viruses known as bacteriophages. The first team was made up of researchers from several...

Model could create hurricane forecasts up to 18 months in advance

Every spring, researchers publish their projected forecasts of the upcoming hurricane season—how many storms may form, and how severe they may be. But what if you could create these forecasts up to a year and a half in advance? A new model from North Carolina State University incorporates machine learning to create long-range hurricane forecasts with similar accuracy to those currently in use.

Latest observations by MUSER help clarify solar eruptions

Prof. Yan Yihua and his research team from the National Astronomical Observatories of the Chinese Academy of Sciences (NAOC) recently released detailed results of observations by the new generation solar radio telescope—Mingantu Spectral Radio Heliograph (MUSER)—from 2014 to 2019.

Researchers develop compact on-chip device for detecting electric-field waveforms with attosecond time resolution

Understanding how light waves oscillate in time as they interact with materials is essential to understanding light-driven energy transfer in materials, such as solar cells or plants. Due to the fantastically high speeds at which light waves oscillate, however, scientists have yet to develop a compact device with enough time resolution to directly capture them.

Get to know your plants through ionomics

Living beings need elements to develop properly. The study of ionomics measures and analyzes the element accumulations in living organisms to determine which mineral nutrients are required and not required for growth. Associate Professor Toshihiro Watanabe from Hokkaido University's Research Faculty of Agriculture applies this approach to learn about mineral accumulation in both plants and soil,...