feed info

68 articles from PhysOrg

Researchers discover how the intestinal epithelium folds and moves by measuring forces

An international team led by Xavier Trepat at IBEC measures the cellular forces in mini-intestines grown in the laboratory, deciphering how the inner wall of this vital organ folds and moves. The study, published in Nature Cell Biology, opens the doors to a better understanding of the bases of diseases such as celiac disease or cancer, and to the ability to find solutions for gut diseases through...

Electronic monitoring failed to reduce recidivism for girls in juvenile justice system, says study

In recent years, many juvenile courts have adopted in-home detention with electronic monitoring tethers as an alternative to institutional incarceration. A new study has examined whether this approach reduces recidivism among girls involved in the juvenile justice system. The study found that tethers failed to reduce reoffending among the girls; in fact, they may be harmful because in-home...

Lead from leaded petrol persists in London air despite '90s ban

Lead levels in London's atmosphere have dropped drastically since lead additives in petrol were phased out, and currently meet UK air quality targets. However despite this drop, airborne particles in London are still highly lead-enriched compared to natural background levels, according to new Imperial research published today in PNAS.

How do developing spinal cords choose 'heads' or 'tails'?

The progression from a round ball of cells to an embryo with a head and a tail is one of the most critical steps in an organism's development. But just how cells first start organizing themselves with directionality along this head-to-tail axis is hard to study because it happens in the earliest days of embryonic development, in the confines of a mammal's uterus.

Poaching affects behavior of endangered capuchin monkeys in Brazilian biological reserve

A study conducted in the Una Biological Reserve in the state of Bahia, Brazil, shows that in a habitat with high hunting pressure the risk of predation has such a significant impact on the behavior of the Yellow-breasted capuchin monkey Sapajus xanthosternos that it even avoids areas offering an abundant supply of plant biomass and invertebrates, its main sources of food.

Modeling a circular economy for electronic waste

Think about how many different pieces of technology the average household has purchased in the last decade. Phones, TVs, computers, tablets, and game consoles don't last forever, and repairing them is difficult and often as expensive as simply buying a replacement.

Profiling gene expression in plant embryos, one nucleus at a time

Following fertilization, early plant embryos arise through a rapid initial diversification of their component cell types. As a result, this series of coordinated cell divisions rapidly sculpts the embryo's body plan. The developmental phenomenon in question is orchestrated by a transcriptional activation of the plant genome. However, the underlying cellular differentiation programs have long...

Universal mechanism of regulation in plant cells discovered

All plant cells obtain their energy mainly from two organelles they contain—chloroplasts (responsible for photosynthesis) and mitochondria (responsible for the biochemical cycle of respiration that converts sugars into energy). However, a large number of a plant cell's genes in its mitochondria and chloroplasts can develop defects, jeopardizing their function. Nevertheless, plant cells evolved...

Researchers develop a model to better understand the forces that generate tsunamis

The word "tsunami" brings immediately to mind the havoc that can be wrought by these uniquely powerful waves. The tsunamis we hear about most often are caused by undersea earthquakes, and the waves they generate can travel at speeds of up to 250 miles per hour and reach tens of meters high when they make landfall and break. They can cause massive flooding and rapid widespread devastation in...

Common perovskite superfluoresces at high temperatures

A commonly studied perovskite can superfluoresce at temperatures that are practical to achieve and at timescales long enough to make it potentially useful in quantum computing applications. The finding from North Carolina State University researchers also indicates that superfluorescence may be a common characteristic for this entire class of materials.

Tulsa's jazz-style evolution on flood control shows importance of collaboration, says study

Tulsa may not be the first town one thinks of when talking about jazz, and flood management may not be the first vocation one compares to the musical genre. But the success Tulsa displayed in going from one of the nation's most flood-prone cities to a nationally recognized model of long-term risk reduction in just two decades is analogous to the evolution of one of the most American styles of...

Vegetation of planet Earth: Researchers publish unique database as open access

It's a treasure trove of data: The global geodatabase of vegetation plots "sPlotOpen" is now freely accessible. It contains data on vegetation from 114 countries and from all climate zones on Earth. The database was compiled by an international team of researchers led by Martin Luther University Halle-Wittenberg (MLU), the German Centre for Integrative Biodiversity Research (iDiv) and the French...

Physicists create platform to achieve ultra-strong photon-to-magnon coupling

A team of scientists from NUST MISIS and MIPT have developed and tested a new platform for realization of the ultra-strong photon-to-magnon coupling. The proposed system is on-chip and is based on thin-film hetero-structures with superconducting, ferromagnetic and insulating layers. This discovery solves a problem that has been on the agenda of research teams from different countries for the last...

New research unlocks the mystery of New England's beaches

Millions of Americans will visit New England's beaches this summer to cool off, play in the waves and soak up the sun. Until now, the factors governing which beaches slope gradually to the sea and which ones end abruptly in a steep drop-off have been largely unknown. However, new research from the University of Massachusetts Amherst reveals, with unprecedented detail, how the grain size of beach...

Major ocean-observing satellite starts providing science data

After six months of check-out and calibration in orbit, the Sentinel-6 Michael Freilich satellite will make its first two data streams available to the public on June 22. It launched from Vandenberg Air Force Base in California on Nov. 21, 2020, and is a U.S.-European collaboration to measure sea surface height and other key ocean features, such as ocean surface wind speed and wave height.

New study on climate change impacts on plants could lead to better conservation strategies

The loss of plant species that are especially vulnerable to climate change might lead to bigger problems than previous studies have suggested, according to a new study published in the journal Proceedings of the National Academy of Sciences. If confirmed, the findings can help inform conservation strategies and lead to more accurate predictions about what ecosystems will look like in the future.

'Pack ice' tectonics reveal Venus' geological secrets

A new analysis of Venus' surface shows evidence of tectonic motion in the form of crustal blocks that have jostled against each other like broken chunks of pack ice. The movement of these blocks could indicate that Venus is still geologically active and give scientists insight into both exoplanet tectonics and the earliest tectonic activity on Earth.