117 articles from FRIDAY 8.10.2021

Latest results from cosmic microwave background measurements

The universe was created about 13.8 billion years ago in a blaze of light: the big bang. Roughly 380,000 years later, after matter (mostly hydrogen) had cooled enough for neutral atoms to form, light was able to traverse space freely. That light, the cosmic microwave background (CMB) radiation, comes to us from every direction in the sky uniformly ... or so it first seemed. In the last decades...

Levi­tating particles in a vacuum

Levitation of both large objects and of single atoms has become a widely used technique in science and engineering. In the last years, many researchers have started to explore a new horizon: the levitation of nano- and micro-particles—still smaller than the diameter of a single hair, but composed of billions of atoms—in vacuum.

New, environmentally friendly method to extract and separate rare earth elements

A new method improves the extraction and separation of rare earth elements—a group of 17 elements critical for technologies such as smart phones and electric car batteries—from unconventional sources. New research led by scientists at Penn State and the Lawrence Livermore National Laboratory (LLNL) demonstrates how a protein isolated from bacteria can provide a more environmentally friendly...

Unambiguous experimental demonstration of magnon transfer torque effect

Spin torque provides convenient electric means to efficiently control magnetizations. It can usually be produced by spin-polarized current or pure spin current via spin Hall effect. The former and the latter are named as spin transfer torque (STT) and spin orbit torque (SOT), respectively. Utilizing these tools, people have developed the second generation STT-MRAM (Magnetic Random-Access Memory)...

New measurement method enables more precise investigation of ultrafast processes in matter

A team of researchers from Freiburg led by Prof. Dr. Frank Stienkemeier and Dr. Lukas Bruder has succeeded in developing a new measurement method for investigating ultrafast processes in matter. These are processes at the atomic and molecular level that occur within a billionth of a second (10-12 sec). The new method, which combines different spectroscopy techniques, enables, among other things,...

Using indoor air sampling surveillance to sniff out COVID-19

A team of scientists and doctors has developed a capability to detect airborne SARS-CoV-2 RNA -- the nucleic acid coding for the virus that causes COVID-19 -- indoors through air sampling. When trialed in two inpatient wards of a major Singaporean hospital caring for active COVID-19 patients the air surveillance approach produced a higher detection rate of environmental SARS-CoV-2 RNA (72%)...

Stem cell population identified that is key for bone regeneration

Researchers have identified a subpopulation of mesenchymal stem cells in the bone marrow that express the marker CD73. These cells have a higher potential for proliferation and differentiation, and play a significant role in bone healing, migrating to the site of a fracture and developing into cartilage and bone cells as part of the repair process. These cells have potential for regenerative...

What makes us human? The answer may be found in overlooked DNA

Our DNA is very similar to that of the chimpanzee, which in evolutionary terms is our closest living relative. Stem cell researchers have now found a previously overlooked part of our DNA, so-called non-coded DNA, that appears to contribute to a difference which, despite all our similarities, may explain why our brains work differently.

Ruling electrons and vibrations in a crystal with polarized light

The quantum behavior of atomic vibrations excited in a crystal using light pulses has much to do with the polarization of the pulses, say materials scientists. The findings from their latest study offer a new control parameter for the manipulation of coherently excited vibrations in solid materials at the quantum level.

Charting hidden territory of the human brain

Neuroscientist shave discovered a novel, non-invasive imaging-based method to investigate the visual sensory thalamus, an important structure of the human brain and point of origin of visual difficulties in diseases such as dyslexia and glaucoma. The new method could provide an in-depth understanding of visual sensory processing in both health and disease in the near future.

Low-cost, continuous seismic monitoring system to support emission reduction efforts

Researchers have developed a continuous seismic monitoring system that could monitor multiple geothermal or carbon storage reservoirs over a relatively large area in real time. A small seismic source generates repeated 'chirps,' which can be detected by fiber-optic cables within a radius of 80 km from the source. Field experiments showed that temporal changes in monitored reservoirs were captured...

Stress in Earth's crust determined without earthquake data

Scientists at Los Alamos National Laboratory have developed a method to determine the orientation of mechanical stress in the earth's crust without relying on data from earthquakes or drilling. This method is less expensive that current approaches, could have broad applicability in geophysics and provide insight into continental regions lacking historical geologic information.