Ultrafast control of vortex microlasers

The development of classical and quantum information–processing technology calls for on-chip integrated sources of structured light. Although integrated vortex microlasers have been previously demonstrated, they remain static and possess relatively high lasing thresholds, making them unsuitable for high-speed optical communication and computing. We introduce perovskite-based vortex microlasers and demonstrate their application to ultrafast all-optical switching at room temperature. By exploiting both mode symmetry and far-field properties, we reveal that the vortex beam lasing can be switched to linearly polarized beam lasing, or vice versa, with switching times of 1 to 1.5 picoseconds and energy consumption that is orders of magnitude lower than in previously demonstrated all-optical switching. Our results provide an approach that breaks the long-standing trade-off between low energy consumption and high-speed nanophotonics, introducing vortex microlasers that are switchable at terahertz frequencies.