Scientists discover new class of semiconducting entropy-stabilized materials

Semiconductors are important materials in numerous functional applications such as digital and analog electronics, solar cells, LEDs, and lasers. Semiconducting alloys are particularly useful for these applications since their properties can be engineered by tuning the mixing ratio or the alloy ingredients. However, the synthesis of multicomponent semiconductor alloys has been a big challenge due to thermodynamic phase segregation of the alloy into separate phases. Recently, University of Michigan researchers Emmanouil (Manos) Kioupakis and Pierre F. P. Poudeu, both in the Materials Science and Engineering Department, utilized entropy to stabilize a new class of semiconducting materials, based on GeSnPbSSeTe high-entropy chalcogenide alloys, a discovery that paves the way for wider adoption of entropy-stabilized semiconductors in functional applications. Their article, "Semiconducting high-entropy chalcogenide alloys with ambi-ionic entropy stabilization and ambipolar doping" was recently published in the journal Chemistry of Materials.