feed info

56 articles from PhysOrg

Scientists develop new approach to understanding massive volcanic eruptions

A geosciences team led by the University of South Florida (USF) has developed a new way to reconstruct the sizes of volcanic eruptions that occurred thousands of years ago, creating a first-of-its kind tool that can aid scientists in understanding past explosive eruptions that shaped the earth and improve the way of estimating hazards of future eruptions.

Uncovering how plants see blue light

Plants can perceive and react to light across a wide spectrum. New research from Prof. Nitzan Shabek's laboratory in the Department of Plant Biology, College of Biological Sciences shows how plants can respond to blue light in particular.

Study resolves long-running controversy over critical step in gene silencing

A long-running debate over how an important gene-silencing protein identifies its targets has been resolved by researchers at Massachusetts General Hospital (MGH). Their findings, reported in Nature Structural and Molecular Biology, also explain certain mysteries about the behavior of this protein, known as Polycomb repressive complex 2 (PRC2).

Gas pressure depletion and seismicity

Europe's largest gas field, the Groningen field in the Netherlands, is widely known for induced subsidence and seismicity caused by gas pressure depletion and associated compaction of the sandstone reservoir. Whether compaction is elastic or partly inelastic, as implied by recent experiments, is key to forecasting system behavior and seismic hazard.

Reawakened geyser does not foretell Yellowstone volcanic eruptions, study shows

When Yellowstone National Park's Steamboat Geyser—which shoots water higher than any active geyser in the world—reawakened in 2018 after three and a half years of dormancy, some speculated that it was a harbinger of possible explosive volcanic eruptions within the surrounding geyser basin. These so-called hydrothermal explosions can hurl mud, sand and rocks into the air and release hot steam,...

First glimpse of polarons forming in a promising next-gen energy material

Polarons are fleeting distortions in a material's atomic lattice that form around a moving electron in a few trillionths of a second, then quickly disappear. As ephemeral as they are, they affect a material's behavior, and may even be the reason that solar cells made with lead hybrid perovskites achieve extraordinarily high efficiencies in the lab.

Fluoride to the rescue? Addressing the challenge of antibiotic-resistant bacteria

Scientists have long been aware of the dangerous overuse of antibiotics and the increasing number of antibiotic-resistant microbes that have resulted. While over-prescription of antibiotics for medicinal use has unsettling implications for human health, so too does the increasing presence of antibiotics in the natural environment. The latter may stem from the improper disposal of medicines, but...

Experiment to precisely measure electrons moves forward

A new probe of the humble electron may provide insight into the forces at work inside the heart of matter. Now, the MOLLER experiment at the U.S. Department of Energy's Thomas Jefferson National Accelerator Facility is one step closer to carrying out an experiment to gain that new insight. The experiment has just received a designation of Critical Decision 1, or CD-1, from the DOE, which is a...

Chemists succeed in synthesis of aminoalcohols by utilizing light

Whether in beta-blockers to treat high blood pressure or in natural products, so-called vicinal aminoalcohols are high-quality organic compounds that are found in many everyday items. However, their production is difficult, and for a long time, chemists have been trying to develop efficient methods of synthesizing them. In their recent study published in the journal Nature Catalysis, scientists...

Powerful graphene hybrid material for highly efficient supercapacitors

A team working with Roland Fischer, Professor of Inorganic and Metal-Organic Chemistry at the Technical University Munich (TUM) has developed a highly efficient supercapacitor. The basis of the energy storage device is a novel, powerful and also sustainable graphene hybrid material that has comparable performance data to currently utilized batteries.

Scientists discover how mother-of-pearl self-assembles into a perfect structure

In a new study published in Nature Physics, researchers from the B CUBE—Center for Molecular Bioengineering at TU Dresden and European Synchrotron Radiation Facility (ESRF) in Grenoble describe, for the first time, that structural defects in self-assembling nacre attract and cancel each other out, eventually leading to a perfect periodic structure.

New data-driven global climate model provides projections for urban environments

Cities only occupy about 3% of the Earth's total land surface, but they bear the burden of the human-perceived effects of global climate change, researchers said. Global climate models are set up for big-picture analysis, leaving urban areas poorly represented. In a new study, researchers take a closer look at how climate change affects cities by using data-driven statistical models combined with...

Greener chemistry through new approach to catalysis

Researchers at Delft University of Technology (TU Delft) have developed a catalyst that is effective in negligible amounts. Due to its form and durability, the catalyst lasts much longer in reactions, saving a great deal of energy, preventing waste and reducing costs. The results have been published in Nature Communications.

Convex to concave: More metasurface moiré results in wide-range lens

The odd, wavy pattern that results from viewing certain phone or computer screens through polarized glasses has led researchers to take a step toward thinner, lighter-weight lenses. Called moiré, the pattern is made by laying one material with opaque and translucent parts at an angle over another material of similar contrast.